
1. INTRODUCTION 

In 1931 F. P. Ramsey proved the following: 

Theorem 1.1. RTk: If the collection of n-element subsets of the natural numbers N is 

partitioned into k colors, then there is an infinite set H all of whose n-element subsets 

have the same color. 

For an integer n > 0, let [n] denote the set {iii :::; n}. Let [nt denote the r-element 

subsets of [n]. A finite version of RTk may be stated as follows: 

Theorem 1.2. For any positive integers l , k, r, there is an n > l such that if [nt is 
partitioned into k colors, then there is a subset H of [n], with size l, such that all r

element subsets of H have the same color. 

Theorem 1. 2 is a finite version of Theorem 1.1 in the sense that n ---+ oo as l ---+ oo. 

Although at first glance RTk and its finite version appear to be just combinatorial state

ments about coloring and therefore perhaps of limited interest, mathematical develop

ments over the last several decades have pointed to important links between them and 

different branches of mathematics. The following lists some of the most notable connec

tions: 

( 1) Logic: The famous incompleteness theorem of Godel states that if the first order 

theory of Peano arithmetic (which essentially consists of the standard axioms con

cerning arithmetic operations, plus mathematical induction) is consistent (i.e. it 

does not prove statements like 0 f 0. More on this later), then there is a state

ment about the natural numbers that, while true, cannot be proved within the 

system. In 1974, Paris and Harrington used a variant of the finite Ramsey Theo
rem, which is in fact a consequence of the latter, to prove Godel's theorem. This 

was the first natural example of an unprovable true statement about the integers. 
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(2) Topological dynamics: The work of Furstenberg (1981) that proves Szemeredi 's 

Theorem (1975) on arithmetic progression. 

(3) Model theory: The existence of indiscernibles in models of countable complete 

theories, an important ingredient in the proof of Morley's celebrated categoricity 

theorem (1965). 

( 4) Geometry of Banach spaces: The proof of Rosenthal's theorem on Z1 space and 

Grower's positive solution of the homogeneity problem of Banach spaces, and the 

subsequent development in the 1980's and 1990's. 

We consider here Ramsey's Theorem from the logical point of view. In early 20th 

century, David Hilbert embarked on the study of foundations of mathematics, identifying 

as a major program the proof of the consistency of mathematics from a set of axioms. 

That ambitious project was dealt a death blow by Godel's Incompleteness Theorem. 

In the ensuing years, the study of the foundations of mathematics has assumed a heavy 

philosophical bent, and mathematical logic has moved on to explore uncharted territories, 

sometimes completely ignoring foundational issues. 

The work of Harvey Friedman, Stephen Simpson and others, perhaps beginning with 

Friedman's MIT doctoral thesis of 1968 and continuing into the 1980's and 1990's, has 

led to the creation of a new subject called reverse mathematics which may be viewed as 

a new chapter in Hilbert's program. 

The central question in reverse mathematics is the following: Which set existence 

axiom in subsystems of second order arithmetic is necessary, or sufficient, or both, to 
prove theorems in mathematics? To make this question precise, we begin by recalling 

some basic notions. 

2. SUBSYSTEMS OF SECOND ORDER ARITHMETIC 

The Peano axioms consist of the following: 

(i) 0 is a number; 

(ii) If x is a number, x + 1 (the successor of x) is a number; 

(iii) 0 is not the successor of any number; 

(iv) Ifx+1 = y+1,thenx = y; 
( v) (Mathematical Induction) If 0 satisfies property <I>, and x + 1 satisfies property <I> 

whenever x does, then all numbers satisfy <I>. 

(vi) (Comprehension Axiom) For any property <I> about numbers x, the collection 

{ xlx satisfies <I>} is a set. 
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We remark that there is some subtlety in (v) and (vi) . Namely, the truth of (v) or (vi) 

depends on the context in which it is considered. For example, if we only allow computable 

sets in our world, then non-computable sets are cast out of the picture. In that situation, 

{ x lx satisfies <I>} may not be computable and therefore is not a set in the world being 

considered. The <I> in (v) and (vi) refer to second order number-theoretic properties, 

i.e. statements that may mention subsets of the natural numbers N (second order) or 

numbers themselves (first order), but not sets of sets of numbers (third order). Thus a 

sequence of numbers may be mentioned in <I> (for example, <I> may be the statement: x 
is a limit point of an infinite sequence A), but not the set of all infinite sequences. (Note 

that it makes sense to talk about sequences and limits in what apparently is a universe 

consisting only of natural numbers, since the notions of rational numbers, limits etc. may 

be coded in any model that satisfies the system RCA0 which we define below.) 

There is a hierarchy of subsystems of second order arithmetic determined by the 

strength of the set existence axiom in the subsystem. This is defined in terms of the 

complexity of <I> in ( v) and (vi): 

First of all, we restrict mathematical induction to what is called "'E~ statements". A 

typical example of a 'E~ statement would be 3z(x + 1 = z), or 3zVy:::; x(z > y). From 

the computational point of view, a 'E~ statement is one where a computer program will 

print an output if and when a z for the ::Jz is found, and no output otherwise (there need 

not be an a priori knowledge of whether a z exists). A statement like ::JzVy( ... ) is not 

'E~ since in principle no computer program can decide if the z being considered works for 

all y. 'E~ induction provides a bare minimum for any system to be sufficiently strong to 

derive nontrivial mathematical results. 

Next, for (vi) we restrict <I> to those that are computable from sets previously admitted 

into the model being considered. This is called Recursive Comprehension Axiom. The 

basic subsystem of second order arithmetic consists of 'E~ induction plus recursive com

prehension. It is denoted RCA0 . A good example of a model for RCA0 is the structure 

consisting of the set of natural numbers, plus the collection of all computable sets (as the 

class of second order objects in the model). 

It turns out that RCA0 is a fairly powerful system. Many of the basic notions of 

analysis may be formulated within the system. It is known, for example, that RCA0 is 

equivalent to the Intermediate Value Theorem in calculus. 

A system that is strictly stronger than RCA0 is Weak Konig's Lemma WKL0 : Every 

infinite binary tree has an infinite path. Several classical results in mathematics, such as 

the Reine-Borel Theorem, Brouwer's Fixed Point Theorem, the local existence theorem for 
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solutions of systems of differential equations and so on have been shown to be equivalent 

to WKL0 over RCA0 . 

Next up in the hierarchy of subsystems is RCA0 endowed with arithmetic comprehen

sion: Any property that is described using numbers and sets is satisfied by a set within 

a model of such a system. Thus, for example, if an infinite set X of numbers satisfies the 

axioms in the system, then many (indeed infinitely many) infinite subsets of X do. This 

system is denoted ACA0 . It is known that, over RCA0 , ACA0 is stronger than WKL0 and 

equivalent to the Bolzsano-Weierstrass Theorem as well as the classical Konig's Lemma: 

Any infinite finitely branching tree has an infinite path. 

Beyond ACA0 , there are stronger systems such as ATRo (Arithmetic Transfinite Re

cursion) and II~-comprehension. We shall not get into the technical details, except to 

point out that the former is equivalent to the theorem that every uncountable set of reals 

contains a perfect subset, while the latter is equivalent to the Cantor-Bendixson Theorem 

stating that every uncountable set of reals is the union of a perfect set and a countable 

set. The following picture is a summary of the relative strengths of these systems: 

RCAo 

The strength of Ramsey's Theorem (Theorem 1.1) in this hierarchy has been the subject 

of active research in recent years. Surprisingly, there is a striking difference in terms of 

proof-theoretic strength between RT~ and RT~ for n > 2 (it is straightforward to verify 

that RTk is equivalent to RT~ for any k, n). 

3. THE STRENGTH OF RAMSEY'S THEOREM 

An earlier work of Jockusch (1972) implies that RT~ is equivalent to ACA0 . For a 

long time it was not clear where RT~ stood. A major result of Seetapun and Slaman 

in 1995 shows that RT~ is in fact strictly weaker than RT~ for n > 2. Although more 
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expressive power becomes available when considering exponent n > 2, the exaCt reason 

for the relative strength of RT~ over RT~ came somewhat as a surprise. 

There is a refinement of the problem of 2-coloring of pairs. If f is a partition of N2 

into two colors, then we say that f is stable if for all x, lims f ( x, s) exists. Denote by 
SRT~ the statement that every stable 2-coloring of pairs has an infinite set all of whose 

2-element subsets have the same color. Clearly RT~ implies SRT~. The conjecture is that 

the converse is false. Despite many attempts, it remains open. 

From the point of view of computability theory, the conjecture is entirely reasonable. 
Jockusch (1972) proved that in general, a solution for a 2-coloring of pairs can be fairly 

complicated. In fact he exhibited a 2-coloring where no solution is computable in the 

halting problem of Thring. By contrast, any stable 2-coloring admits a solution that is 

computable in the halting problem. Thus, to establish the conjecture, it is necessary to 

construct a model of RCA0 + SRT~ in which RT~ fails. The most obvious approach is to 

ensure that Jockusch's 2-coloring has no solution in the model. It is not clear how such 

a model can be obtained. 

Traditionally, work in RT~ has been largely focused on studying the class of "w-models", 

mathematical structures whose first order universe is the set of natural numbers. However, 

in any system of arithmetic, there exist nonstandard models whose universe consist of the 

natural numbers and nonstandard numbers. Nonstandard models of RCA0 + RT~ provide 

a different perpective to the problem of SRT~ and Ramsey type problems in general. A 

recent work of Chong, Slaman and Yang (2006) on the strength of the combinatorial 

principle COH ("cohesiveness") and RT~ illustrates the relevance of nonstandard models 

in such investigations. 
Finally, the strength of RT~ relative to WKL0 remains unsolved. It is known that WKL0 

does not prove RT~, but that is the extent of our present knowledge. Interestingly, while 

arguments concerning RT~ make essential use of the existence of infinite paths on binary 

trees, it is not obvious how this use can be formalized and turned into a proof that RT~ 
implies WKL0 . The problem appears to be difficult. 
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