Cover-up Rule for Partial Fractions

- a simple explanation using limits

Decomposing a rational function $\frac{P(x)}{Q(x)}$ into its partial fractions is a useful technique when performing integration of rational functions. For instance to find the anti-derivative of

$$
\frac{5 x+7}{(x+1)(x+2)},
$$

we need to decompose the above rational function into its partial fractions first. To this end, we assume the rational function is equal to

$$
\frac{a}{x+1}+\frac{b}{x+2},
$$

then

$$
\frac{5 x+7}{(x+1)(x+2)}=\frac{a}{x+1}+\frac{b}{x+2} .
$$

Thus,

$$
\begin{equation*}
\frac{5 x+7}{(x+1)(x+2)}=\frac{(x+2) a+(x+1) b}{(x+1)(x+2)} . \tag{1}
\end{equation*}
$$

Comparing numerators,

$$
\begin{equation*}
5 x+7=(x+2) a+(x+1) b \tag{2}
\end{equation*}
$$

Comparing the coefficient of x and constant term, we have the simultaneous equations

$$
\begin{aligned}
5 & =a+b \\
7 & =2 a+b
\end{aligned}
$$

Solving the equations we have.

$$
a=2 \quad \text { and } \quad b=3 .
$$

Hence

$$
\frac{5 x+7}{(x+1)(x+2)}=\frac{2}{x+1}+\frac{3}{x+2} .
$$

Thus

$$
\int \frac{5 x+7}{(x+1)(x+2)} d x=\int \frac{2}{x+1} d x+\int \frac{3}{x+2} d x .
$$

Cover-Up Rule

Some textbooks introduce a short cut to determining the coefficients a and b. This method is called the Covering-up (or cover-up) rule. This is particularly useful for partial fractions with simple linear denominators. For instance, to
determine the coefficient of $\frac{1}{(x+1)}$ in the above example, we cover up the factor $(x+1)$ in the denominator and put $x=-1$, i.e.,

$$
a=\left.\frac{5 x+7}{(\square \square)(x+2)}\right|_{x=-1}=\frac{-5+7}{-1+2}=2 .
$$

Covering up $(x+2)$ and putting $x=-2$, we have

$$
b=\left.\frac{5 x+7}{(x+1)(\square \square)}\right|_{x=-2}=\frac{-10+7}{-2+1}=3
$$

A usual "proof" of this method is as follows. Consider equation (2),

$$
5 x+7=(x+2) a+(x+1) b
$$

To get rid of b, we let $x=-1$, then we have

$$
5(-1)+7=(-1+2) a+(0) b
$$

thus

$$
a=\frac{5(-1)+7}{(-1+2)}
$$

which is the "covering-up" of the factor $(x+1)$:

$$
a=\left.\frac{5 x+7}{(\square \square \square)(x+2)}\right|_{x=-1}
$$

Similarly, letting $x=-2$ we obtain $b=3$. However, this explanation is technically not correct. We note that equation (2) is in fact comparing numerators of equation (1), which is valid only when the denominator is nonzero. As a result, equation (2) holds only when $x \neq-1$ and $x \neq-2$. Equation (2) should be stated as follows:

$$
\begin{equation*}
5 x+7=(x+2) a+(x+1) b, \quad x \neq-2,-1 \tag{2}
\end{equation*}
$$

Therefore we may not substitute $x=-1$ or $x=-2$ into (2).
Nonetheless, (2) is valid for any number x as long as $x \neq-1,-2$. Recall that the purpose of covering-up is to eliminate one the unknown coefficient. Instead of substituting $x=-1$ (which is not allowed), to eliminate b, we can subsitute x closed to -1 , but not equal to -1 , e.g., we take $x=-0.9$, or $x=-0.999$, or $x=-0.9999999999$, etc., so that the "proportion" of b diminishes as x gets closer to -1 .

Limit of a function

The process of evaluting a function $f(x)$ by substituting x arbitarily closed to number c (without taking $x=c$) is called finding the limits. For instance,
if $f(x)=\frac{x^{2}-1}{x-1}$, and we want to find the limit when $x \rightarrow 1$, we need to substitute x by a number near 1 (but not 1). For instance, $f(1.1)=\frac{1.21-1}{1.1-1}=$ 2.1, $f(1.01)=\frac{1.0201-1}{1.01-1}=2.01 \ldots$, also $f(0.9)=1.9, f(0.99)=1.99, \ldots$ We see that as $x \rightarrow 1, f(x) \rightarrow 2$. In this case, we say that

$$
\lim _{x \rightarrow 1} f(x)=2
$$

Coming back to the cover-up rule, since Equation (2) is valid for all $x \neq$ $-2,-1$, and $\lim _{x \rightarrow-1}(x+1)=0$, to eliminate b,
we take limits as x tends to -1 on both sides of (2),

$$
\lim _{x \rightarrow-1}[5 x+7]=\lim _{x \rightarrow-1}[(x+2) a]+\lim _{x \rightarrow-1}[(x+1) b]
$$

thus

$$
(5(-1)+7)=((-1)+2) a
$$

or

$$
a=\frac{(5(-1)+7)}{((-1)+2)}
$$

which this the required "covering-up" of $(x+1)$.

