What is Implication?

Let S be the set of natural numbers up to $40:\{1,2,3, \ldots, 39,40\}$. Classify every element of S two ways, according to whether it is divisible by 4 , and whether it is divisible by 2 .

	Divisible by 2	Not divisible by 2
Divisible by 4	$4,8,12, \ldots, 40$	
Not divisible by 4	$2,6,10, \ldots, 38$	$1,3,5, \ldots, 39$

Table 1: Classification of S via divisibility by 4 (rows) and by 2 (columns).

The empty cell means S contains no number which is divisible by 4 but not 2 . I.e., if an element of S is divisible by 4 , then it is divisible by 2 . Equivalently,

On S, divisibility by 4 implies divisibility by 2.
The general definition of implication is as follows. Let Σ be a set, and let A and B be statements applicable to every element of Σ. Imagine placing every element in the correct cell in the Table 2. The statement

$$
\begin{equation*}
\text { On } \Sigma, A \text { implies } B . \tag{1}
\end{equation*}
$$

means there is no element in Σ for which A is true and B is false, i.e., the cell marked by * is empty. Similarly, "On Σ, B implies A." means there is no element in Σ for which B is true and A is false, or the cell marked by \# is empty.

	B is true	B is false
A is true		$*$
A is false	$\#$	

Table 2: Classification of Σ via truth of A (rows) and of B (columns).
If Σ is infinite, it is clearly not possible to classify each element in order to prove or disprove " A implies B.". Instead, some argument must be made for why the cell marked * is empty, or an element must be shown to belong there, which is a counter-example. For instance, divisibility by 4 implies divisibility by 2 for all natural numbers, not just for S. This must be proved by showing that any multiple of 4 is also a multiple of 2 . The
argument is not difficult once you write down general expressions for multiples of 4 and of 2 , and it is quite persuasive.

Table 1 shows that on S, divisibility by 2 does not imply divisibility by 4 . Notice that none of the counter-examples $2,6,10,14,18,22,26,30,34,38$ are perfect squares. Thus, on the subset of perfect squares in S, divisibility by 2 does imply divisibility by 4 . In fact, Table 3 shows that both implications are true. We say divisibility by 2 and divisibility by 4 are equivalent on this set.

	Divisible by 4	Not divisible by 4
Divisible by 2	$4,16,36$	
Not divisible by 2		$1,9,25$

Table 3: Classification of perfect squares in S via divisibility by 2 (rows) and by 4 (columns).

Here is a generalisation for you to imagine a table and possibly construct a proof. Let p be a prime number. On the natural numbers which are perfect squares, divisibility by p implies divisibility by p^{2}.

In the case Σ consists of one element, there are only 4 possibilities for Table 2 , of which exactly three correspond to (1) being true. For example, let

$$
\Sigma=\{0\}, \quad A=" \ldots \text { is greater than }-1 . ", \quad B=" \ldots \text { is less than } 1 . "
$$

Since both statements are true when applied to 0 , on Σ, A implies B. But it is an odd statement, which is not helped by the paraphrase "If $0>-1$, then $0<1$ ". Even more bizarre is "If $0>1$, then $0>10$ ". It appears that in order to make sense of (1), it is necessary that Σ is sufficiently large, so that A is true for some but not all elements, and likewise for B. The good news is that many important facts in mathematics are indeed so.

Acknowlegdement: The author thanks Chia Aik Song of the Centre for Remote Imaging, Sensing and Processing at the National University of Singapore for valuable comments that improved this piece.

