The slope of a line

Suppose for $n>2,\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ are distinct points on the line $y=m x+c$. The slope can be expressed in terms of the x 's and y 's in many ways, including

$$
m=\frac{y_{j}-y_{i}}{x_{j}-x_{i}}, \quad 1 \leq i \neq j \leq n
$$

Define the means

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

It can be checked that (\bar{x}, \bar{y}) is on the line. Hence for any i with $x_{i} \neq \bar{x}$,

$$
m=\frac{y_{i}-\bar{y}}{x_{i}-\bar{x}}
$$

Notice that the means are invariant to any reordering of the points. For instance, if we swap $\left(x_{1}, y_{1}\right)$ with $\left(x_{n}, y_{n}\right)$, the formulae for \bar{x} and \bar{y} remain the same, but the above formulae for m do not.

Question: Is there an invariant formula for m ?

If for every $i, x_{i} \neq \bar{x}$, it seems feasible to try

$$
m=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)}
$$

Can you see why this does not work?

