The Founding Orthogonal Projection

March 10, 2025

For vectors $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ in \mathbb{R}^n , the dot product is $x \cdot y = \sum_{i=1}^n x_i y_i$, and the length of x is $|x| = \sqrt{x \cdot x}$. If $x \cdot y = 0$, x and y are orthogonal, written $x \perp y$. If there is a number c such that y = cx, x and y are collinear.

Let $\mathbf{1} = (1, ..., 1)$. Suppose $y \cdot \mathbf{1} \neq 0$, and y and $\mathbf{1}$ are not collinear. In other words, the entries of y do not sum to zero, and they are not all the same. Let their mean be \overline{y} .

Define $y_g = \kappa \mathbf{1}$ and $y_h = y - y_g$, where κ is a number such that $y_g \perp y_h$. y can be visualised as the hypotenuse of a right triangle, with y_g and y_h as the other sides. y_g is called the orthogonal projection of y on $\mathbf{1}$. Since $\kappa \neq 0$, the condition $(\kappa \mathbf{1}) \cdot (y - \kappa \mathbf{1}) = 0$ gives

$$\kappa = \frac{\mathbf{1} \cdot y}{\mathbf{1} \cdot \mathbf{1}} = \frac{\sum_{i=1}^{n} y_i}{n}$$

Thus, $y_g = (\overline{y}, \ldots, \overline{y})$, and $y_h = (y_1 - \overline{y}, \ldots, y_n - \overline{y})$ are the deviations of y_1, \ldots, y_n from the mean. Moreover, we have the Pythagorean formula

$$|y|^{2} = y_{g} \cdot y_{g} + 2y_{g} \cdot y_{h} + y_{h} \cdot y_{h} = |y_{g}|^{2} + |y_{h}|^{2} \quad \text{or} \quad \sum_{i=1}^{n} y_{i}^{2} = n\overline{y}^{2} + \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}$$

Dividing by n and rearranging yield the well-known fact that the variance of y_1, \ldots, y_n is equal to the second moment minus the first moment squared. This can be derived by elementary algebra, but the orthogonal route seems more pleasant.

Happily, the orthogonal projection of y on any non-zero x which is neither orthogonal nor collinear to y is encapsulated in the special case above. Just replace **1** by x throughout to conclude the orthogonal projection of y on x is $\frac{x \cdot y}{x \cdot x} x$. This is a good foundation for generalising to orthogonal projection on a subspace of \mathbb{R}^n .

The elegant definition of orthogonality in \mathbb{R}^n is motivated by the remarkable fact that perpendicular line segments in space correspond exactly to orthogonal vectors in \mathbb{R}^3 . Similarly, the Pythagoreans would have agreed that the length of $x \in \mathbb{R}^3$ should be |x|. So the geometry of Euclid can be studied using coordinates, as discovered by Descartes and Fermat. Moreover, a triangle in any dimension can be visualised, and looks just like in \mathbb{R}^3 . Indeed, \mathbb{R}^n with the dot product is called the "*n*-dimensional Euclidean space".